工学 >>> 计算机科学技术 >>> 人工智能 >>> 计算神经网络 >>>
搜索结果: 1-15 共查到计算神经网络 systems相关记录18条 . 查询时间(0.33 秒)
我们考虑梯度下降法训练的较宽的深层全连接神经网络的泛化能力。 我们首先将论证在宽度足够大时,对于一维数据,由梯度下降训练的两层神经网络的泛化能力在适当的早停策略下可以达到极小极大率,而由梯度下降训练至过拟合的两层神经网络没有泛化能力。基于这个结果,我们对Benign Overfitting现象提出了一个新的解释。 随后,对于更一般的数据或者高维数据,我们将会简单介绍一下我们组与深层神经网络的泛化能...
Using knowledge-driven trajectory prediction is difficult to describe complex reasoning processes, and the use of expert prior knowledge can add too many subjective factors to the judgment process, wh...
深度学习作为一种黑箱模型,是通过大量计算实验得到的,其数学原理逐渐引起研究者的广泛关注,同时在各科学领域得到广泛应用。该报告将从两种不同的角度简要介绍深度学习的数学理解与认识:一、从多层卷积稀疏编码模型的编码初始化和字典矩阵设计的角度,建立跨连神经网络与多层卷积稀疏编码模型的等价联系;二、提出深度残差神经网络是在Wasserstein空间学习测地曲线的理论。最后,将简要介绍深度学习如何赋能空间组学...
We shall discuss various Barron type spaces arising from neural networks. The relations among these spaces will be clarified, and we shall also establish the relationship between Barron type spaces an...
The focus of this talk is on the numerical methods used to identify parameters in partial differential equations. Typically, an optimization approach is used to solve this class of inverse problems, w...
偏微分方程在许多学科和工程应用中扮演着重要的角色,例如物理系统的建模,计算化学,流体力学和数值天气预报等。基于偏微分方程对系统未来的演化进行预测往往需要依赖数值解法。传统数值解法在遇到高维问题,复杂边界,参数变化时,将会遇到计算效率不高,结果不可复用等问题。另一方面,深度神经网络在高维问题建模中展现了巨大优势,其中使用深度神经网络进行算子的逼近和学习成为学术研究热点。本报告将介绍我们在将算子学习应...
Modern neural networks are usually over-parameterized—the number of parameters exceeds the number of training data. In this case the loss functions tend to have many (or even infinite) global minima, ...
Why do neural networks (NN) that look so complex usually generalize well? To understand this problem, we find some simple implicit regularizations during training NNs. The first is the frequency princ...
With the advantages of fast calculating speed and high precision, the physics-informed neural network method opens up a new approach for numerically solving nonlinear partial differential equations. B...
Physics-informed neural networks (PINNs) have emerged as an effective technique for solving PDEs in a wide range of domains. Recent research has demonstrated, however, that the performance of PINNs ca...
High-order harmonic generation (HHG) from the interaction of ultra-intense laser pulses with atoms is an important tabletop short-wave coherent light source. Accurate quantum simulations of it present...
2019年9月18日,北京大学北京国际数学研究中心、定量生物学中心张磊课题组在Cell子刊Cell Systems在线发表题为“Network topologies that can achieve dual function of adaptation and noise attenuation”的研究论文。该工作通过数学与生命科学的交叉研究,利用理论分析与大规模科学计算,揭示了生物网络实现“适...
The vehicle-based mobile mapping system (MMS) is effective for capturing 3D shapes and images of roadside objects. The laser scanner and cameras on the MMS capture point-clouds and sequential digital ...
2018年01月30日上午,IEEE Transactions on Systems, Man, and Cybernetics: Systems主编、IEEE Fellow C. L. Philip Chen (陈俊龙) 教授应邀在将军路校区自动化学院1号楼403会议室做题为“Broad Learning (宽度学习): A parading shift in discriminative in...
The rapidly developing field of Brain-Machine Interface (BMI) technology seeks to establish a direct communication-and-control channel between human brain and machines. Practical applications for BMI ...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...