搜索结果: 1-15 共查到“理学 PLS”相关记录24条 . 查询时间(0.075 秒)
Using Band Ratio, Semi-Empirical, Curve Fitting, and Partial Least Squares (PLS) Models to Estimate Cyanobacterial Pigment Concentration from Hyperspectral Reflectance
phycocyanin chlorophyll band ratio MGM water quality
2015/1/16
This thesis applies several different remote sensing techniques to data collected from 2005 to 2007 on central Indiana reservoirs to determine the best performing algorithms in estimating the cyanobac...
A Non-linearized PLS Model Based on Multivariate Dominant Factor for Laser-induced Breakdown Spectroscopy Measurements
LIBS, partial least square, quantitative measurement laser diagnostics
2011/8/29
A multivariate dominant factor based non-linearized PLS model is proposed. The intensities of different lines were taken to construct a multivariate dominant factor model, which describes the dominant...
Application of PLS-Regression as Downscaling Tool for Pichola Lake Basin in India
PLS Regression Precipitation VIP Score
2013/3/6
In this paper, downscaling models are developed using Partial Least Squares (PLS) Regression for obtaining projections of mean monthly precipitation to lake-basin scale in an arid region in India. The...
橄榄油兼有食用和保健的作用,价值与价格远远高于其他食用油,所以橄榄油中以劣充好的现象十分普遍。可采用近红外光谱法测定初榨橄榄油中掺杂芝麻油、大豆油和葵花籽油的光谱数据,运用改进的BP算法——Levenberg-Marquardt方法,建立PCA-BP人工神经网络方法对其进行定性判别。同时采用偏最小二乘法(PLS)建立了初榨橄榄油中芝麻油、大豆油、葵花籽油含量的近红外光谱定标模型,用交互验证法进行验...
GA-PLS结合PC-ANN算法提高奶粉蛋白质模型精度
近红外光谱 GA-PLS PC-ANN
2009/11/2
提出一种偏最小二乘法(PLS)和人工神经网络(ANN)结合用于近红外光谱(NIRS)的分析方法,以提高奶粉蛋白质模型的预测精度。首先采用基于遗传算法的波长选择法(RS-GA)优化光谱数据,建立GA-PLS模型预测奶粉蛋白线性部分;然后在RS-GA法选择的波段上进行主成分分析(PCA),以主成分的得分矩阵作为ANN模型输入层,以GA-PLS预测值与真实值之差作为输出层,建立PC-ANN模型预测其非线...
基于OSC-PLS算法对大麦蛋白质含量进行定量分析的研究
蛋白质 正交信号校正 偏最小二乘
2009/10/29
用色散扫描型仪器采集大麦样品的近红外光谱,扫描出的光谱携带了大量样品化学值信息,采用正交信号校正(OSC)预处理方法对这些原始光谱进行处理,剔除噪声等不相关因子以后建立偏最小二乘(PLS)近红外光谱分析模型(OSC-PLS),预测大麦蛋白质的含量,并与传统PLS建模方法进行对比。基于OSC-PLS算法的蛋白质含量近红外光谱分析模型的测定系数R2为0.901,检验集的化学值与模型预测值的相关系数r达...
基于近红外的PLS量化模型鉴定西湖龙井真伪的研究
近红外 光谱 鉴定
2009/10/26
对西湖龙井进行原产地精确鉴定是规范市场,打击假冒伪劣的迫切需求。文章利用近红外技术对西湖龙井的真伪鉴定进行了研究,提出了一种模型以进行西湖龙井鉴别的新方法。结果表明, 利用西湖龙井茶和其他地区以龙井加工工艺制成的扁形茶全区域的近红外原始光谱,分别对其进行赋值, 采用PLS法建立了西湖龙井的预测模型(主成分数为15),通过预测值和西湖龙井的临界值进行比对实现了对西湖龙井的真伪的准确鉴定。对70份定标...
基于样条变换的PLS非线性回归模型既吸取了样条函数分段拟合以适应任意曲线连续变化的优点,又借鉴了偏最小二乘回归方法能够有效解决自变量集合高度相关的技术.针对多元加法模型,从理论和仿真试验的角度分别验证了,对于多个独立自变量对单因变量为非线性关系的数据系统,基于样条变换的PLS回归方法不仅能够有效实现自变量对因变量的整体预测,而且能够提取各维自变量对因变量的单独非线性作用特征,从而确定数据系统内部...
NIR光谱的LLE-PLS非线性建模方法及应用
局部线性嵌入 偏最小二乘 近红外光谱 丹参多酚酸盐
2009/5/11
传统的偏最小二乘(PLS)建模方法不能有效反映近红外(NIR)光谱与分析样本的物理化学性质之间存在的非线性关系。局部线性嵌入(LLE)是一种新的非线性降维方法,属于流形学习方法,它能有效地发现高维数据中的本真低维结构。结合LLE和PLS,提出一种近红外光谱非线性建模的新方法,并用于建立丹参多酚酸盐柱层析过程中丹酚酸B含量的回归校正模型。该方法首先用LLE对NIR光谱数据降维,再用PLS建立校正模型...
NIR光谱的Isomap-PLS非线性建模方法
近红外光谱 等距映射 非线性降维 偏最小二乘
2009/5/11
针对样品的近红外(NIR)光谱与其物理化学性质之间存在的非线性关系,提出了一种结合等距映射(Isomap)和偏最小二乘(PLS)的非线性建模新方法。Isomap是一种新的非线性降维方法,属于流形学习方法,能有效地发现高维数据中的本真低维结构。Isomap-PLS建模方法首先用Isomap对高维NIR光谱数据作非线性降维,再用PLS降维并建立校正模型。将Isomap-PLS建模方法分别应用于两个公开...
建立了用偏最小二乘(partial least squares ,PLS)与人工神经网络(artificial neural networks,ANN)联用对饲料样品同时测定水分、灰分、蛋白质、磷含量的预测校正模型。光谱数据用二阶微分及标准归一化处理(SNV),用PLS法将原始数据压缩提取前10个主成分与2个特征峰值作为12个输入向量,采用单隐层的反向传播人工神经网络(Back-Propagati...
利用近红外光谱结合PLS-DA判别分析方法可用于食品、药品和农产品等的快速识别或检测,因此,研究利用近红外光谱结合PLS-DA方法来检测木材的生物腐朽。研究结果表明:应用近红外光谱结合PLS-DA方法对培训集样本建立的判别模型,其校正及验证结果与实际分类变量的相关系数均超过0.94,SEC和SEP都低于0.17; 利用模型对未参与建模的样本进行检测,发现该模型对未腐朽、白腐和褐腐三种类型样本的判别...
PLS-GRNN法近红外光谱多组分定量分析研究
近红外光谱 偏最小二乘法 GRNN网络 定量分析
2009/5/8
研究了偏最小二乘(partial least squares ,PLS)与广义回归神经网络(generalized regression neural networks, GRNN)联用在近红外光谱多组分定量分析中的应用。以饲料样品为实验材料,采用PLS-GRNN法建立了饲料中水溶性氯化物、粗纤维、脂肪三项组分含量近红外光谱定量分析模型。马氏距离法剔除强影响点和奇异点,用PLS法将原始数据压缩为主...
在实际应用中,一些实验条件往往不能严格控制而存在变化,从而影响近红外光谱检测模型的稳健性。文章以50个常温和50个冷藏后的奉化水蜜桃样品组成温度混合样品集,经光谱杠杆值和狄克松检验法进行异常光谱剔除后,采用偏最小二乘法(PLS)和逐步多元线性回归(SMLR)对水蜜桃糖度进行建模分析。PLS的建模结果:校正集相关系数RC=0.965, 校正均方根标准误差RMSEC=0.301°Brix,交叉验证RC...