搜索结果: 1-15 共查到“KNN”相关记录37条 . 查询时间(0.125 秒)
铌酸钾钠基(KNN基)无铅铁电薄膜的低温铁电性能
无铅 脉冲激光沉积 铁电性
2022/3/18
锂离子电池的健康状态(State of health,SOH)是决定电池使用寿命的关键因素.由于锂电池生产工艺、工作环境和使用习惯等的差异性导致其衰退特性具有较大差异,因此锂电池SOH难以精确估算.本文采用数据驱动的方式通过对采集的电压数据进行特征提取,使用贝叶斯正则化神经网络对锂电池SOH进行预测,同时引入KNN-马尔科夫修正策略对预测结果进行修正。
四川大学材料科学与工程学院朱建国教授在KNN基无铅压电材料在超声器件应用方面取得重要进展——在Advanced Functional Materials上发表论文(图)
四川大学材料科学与工程学院 朱建国 教授 KNN基无铅压电材料 超声器件
2020/1/2
近日,我校材料科学与工程学院朱建国教授课题组与美国南加州大学周歧发教授团队合作,在KNN基无铅压电材料制备微型超声器件的应用研究方面取得重要进展,相关成果“Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application” 以封面论文形式发表在国际顶级期刊Ad...
一种基于兴趣点分布的匿名框KNN查询方法
位置隐私 基于位置的服务 匿名框 K近邻查询
2016/12/26
针对利用匿名框实现的兴趣点K近邻KNN)查询带来的通信开销大、时延长等问题,提出了基于单一兴趣点Voronoi图划分和四叉树层次化组织的KNN查询方法.该方法根据兴趣点层次信息有针对性的构造查询匿名框用来获取详细查询信息,在保护位置隐私的同时,降低了查询通信开销,同时注入虚假查询保护了用户的真实查询内容隐私.最后分别采用模拟地理数据和真实地理数据进行理论分析和有效性验证.
TROPICAL FOREST BIOMASS ESTIMATION AND MAPPING USING K-NEAREST NEIGHBOUR (KNN) METHOD
K-nearest Neighbour Forest Biomass Landsat Map
2015/8/28
Estimation and mapping of tropical forest biomass is important for periodic carbon accounting, as tropical deforestation is one of the
major sources of terrestrial carbon emission in the recent decad...
MapReduce框架下的优化高维索引与KNN查询
云计算 MapReduce KNN查询 高维索引
2016/12/27
针对大规模高维数据近似查询效率低下的问题,利用MapReduce编程模型在大规模集群上的数据与任务的并行计算与处理优势,提出MapReduce框架下大规模高维数据索引及KNN查询方法(iPBM),重点突破MapReduce数据块(block)的优化划分与各数据块对计算的共同贡献两大难题,利用两阶段数据划分策略并依据相关性与并行性原则将数据均匀分配到各数据块中,设计分布式的双层空间索引结构与并行KN...
指出传统KNN(k-nearest neighbor)算法的两大不足:一是计算开销大,分类效率低;二是在进行相似性度量和类别判断时,等同对待各特征项以及近邻样本,影响分类准确程度.针对第一点不足,提出三种改进策略,分别为:基于特征降维的改进、基于训练集的改进和基于近邻搜索方法的改进;针对第二点不足,提出两种改进策略,分别为:基于特征加权的改进和基于类别判断策略的改进.对每种改进策略中的代表方法进行...
基于KNN的话题跟踪研究
KNN 话题跟踪 话题/报道表示模型 特征选择
2013/7/12
话题跟踪任务的关键技术是文本分类算法,难点在于话题/报道表示模型。根据话题跟踪的定义,对比常用的文本分类算法和文本表示方法,选择KNN文本分类算法作为话题跟踪关键技术,利用向量空间模型设计话题/报道表示模型,结合话题检测与跟踪评测方法实现了话题跟踪系统,试验结果证明KNN作为话题跟踪关键技术,系统具有较稳定的话题跟踪性能。
Kernel-kNN: 基于信息能度量的核k-最近邻算法
距离度量 非线性变换 k-最近邻(k-NN) 核方法
2010/12/28
提出一种核k最近邻算法. 首先给出用于最近邻学习的信息能度量方法, 该方法克服了高维数据不便于用传统距离度量表示的困难, 提高了数据间类别相似性和距离的一致性. 在此基础上, 将传统的kNN扩展为非线性形式, 并采用半正定规划学习全局最优的度量矩阵. 算法主要特点是: 能较好地适用于高维数据, 并有效提升kNN 的分类性能. 多个数据集的实验和分析表明, 本文的Kernel-kNN算法与传统的kN...
加权KNN分类器在HRRP库外目标拒判中的应用
分类器 高分辨距离像 接收机工作特性 损失函数
2013/5/3
针对雷达自动目标识别中的库外目标拒判问题,提出了一种人工生成库外样本的方法和一种加权k最邻近(k nearest neighbors, KNN)分类器。通过人工生成库外高分辨距离像样本,解决了在训练阶段无法获取库外样本的难题。加权KNN分类器同时满足了基于问题和基于数据两大设计要求,能够很好地处理拒判问题。通过基于接收机工作特性(receiver operating characteristic,...
PCA与KNN在胎心率与宫缩描记图分类中的研究
主成分分析 K近邻分类 胎心率与宫缩描记图
2010/3/15
提出了基于主成分分析(Principal Component Analysis,PCA)的K近邻(K Nearest Neighbor,KNN)分类原理,并将其应用于胎心率与宫缩描记图分类。主要思想是:对训练样本和测试样本进行降维,并对降维后的测试样本使用KNN分类技术分类。选择2 120组胎心率与宫缩描记图数据,使用该方法进行分类测试。实验结果表明,使用该类模型,分类结果稳定,分类准确率高,并且...
基于属性值信息熵的KNN改进算法
分类 KNN算法 属性值 信息熵
2010/1/28
为了克服传统KNN算法,距离加权-KNN算法在距离定义及投票方式上的不足,提出了一种基于属性值对类别重要性的改进算法Entropy-KNN。首先定义两个样本间的距离为相同属性值的平均信息熵,此距离可通过重要属性值有效度量样本之间的相似程度,其次算法Entropy-KNN根据上述定义的距离选取与待测试样本距离最小的K个近邻,最后根据各类近邻样本点的平均距离及个数判断待测试样本的类别。在蘑菇数据集上的...
提出了一种小波分析与改进KNN相结合的红虫图像识别方法。该方法采用多辨识小波分解提取图像的小波能量特征,同时结合生物图像颜色特征构造特征向量,然后选择加权改进KNN分类器进行识别,分类器根据特征与分类相关度确定权重,修改距离函数,有效提高了分类精度。通过对红虫、剑水蚤、猛水蚤样本进行分类试验证明,平均识别准确率达到95.41%,验证了该方法的有效性。